| Mathbox for Jarvin Udandy |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > mdandyvrx12 | Structured version Visualization version GIF version | ||
| Description: Given the exclusivities set in the hypotheses, there exist a proof where ch, th, ta, et exclude ze, si accordingly. (Contributed by Jarvin Udandy, 7-Sep-2016.) |
| Ref | Expression |
|---|---|
| mdandyvrx12.1 | ⊢ (𝜑 ⊻ 𝜁) |
| mdandyvrx12.2 | ⊢ (𝜓 ⊻ 𝜎) |
| mdandyvrx12.3 | ⊢ (𝜒 ↔ 𝜑) |
| mdandyvrx12.4 | ⊢ (𝜃 ↔ 𝜑) |
| mdandyvrx12.5 | ⊢ (𝜏 ↔ 𝜓) |
| mdandyvrx12.6 | ⊢ (𝜂 ↔ 𝜓) |
| Ref | Expression |
|---|---|
| mdandyvrx12 | ⊢ ((((𝜒 ⊻ 𝜁) ∧ (𝜃 ⊻ 𝜁)) ∧ (𝜏 ⊻ 𝜎)) ∧ (𝜂 ⊻ 𝜎)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mdandyvrx12.2 | . 2 ⊢ (𝜓 ⊻ 𝜎) | |
| 2 | mdandyvrx12.1 | . 2 ⊢ (𝜑 ⊻ 𝜁) | |
| 3 | mdandyvrx12.3 | . 2 ⊢ (𝜒 ↔ 𝜑) | |
| 4 | mdandyvrx12.4 | . 2 ⊢ (𝜃 ↔ 𝜑) | |
| 5 | mdandyvrx12.5 | . 2 ⊢ (𝜏 ↔ 𝜓) | |
| 6 | mdandyvrx12.6 | . 2 ⊢ (𝜂 ↔ 𝜓) | |
| 7 | 1, 2, 3, 4, 5, 6 | mdandyvrx3 41151 | 1 ⊢ ((((𝜒 ⊻ 𝜁) ∧ (𝜃 ⊻ 𝜁)) ∧ (𝜏 ⊻ 𝜎)) ∧ (𝜂 ⊻ 𝜎)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 196 ∧ wa 384 ⊻ wxo 1464 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 197 df-an 386 df-xor 1465 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |