| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nf3orOLD | Structured version Visualization version GIF version | ||
| Description: Obsolete proof of nf3or 1835 as of 6-Oct-2021. (Contributed by Mario Carneiro, 11-Aug-2016.) (Proof modification is discouraged.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| nfOLD.1 | ⊢ Ⅎ𝑥𝜑 |
| nfOLD.2 | ⊢ Ⅎ𝑥𝜓 |
| nfOLD.3 | ⊢ Ⅎ𝑥𝜒 |
| Ref | Expression |
|---|---|
| nf3orOLD | ⊢ Ⅎ𝑥(𝜑 ∨ 𝜓 ∨ 𝜒) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-3or 1038 | . 2 ⊢ ((𝜑 ∨ 𝜓 ∨ 𝜒) ↔ ((𝜑 ∨ 𝜓) ∨ 𝜒)) | |
| 2 | nfOLD.1 | . . . 4 ⊢ Ⅎ𝑥𝜑 | |
| 3 | nfOLD.2 | . . . 4 ⊢ Ⅎ𝑥𝜓 | |
| 4 | 2, 3 | nforOLD 2244 | . . 3 ⊢ Ⅎ𝑥(𝜑 ∨ 𝜓) |
| 5 | nfOLD.3 | . . 3 ⊢ Ⅎ𝑥𝜒 | |
| 6 | 4, 5 | nforOLD 2244 | . 2 ⊢ Ⅎ𝑥((𝜑 ∨ 𝜓) ∨ 𝜒) |
| 7 | 1, 6 | nfxfrOLD 1837 | 1 ⊢ Ⅎ𝑥(𝜑 ∨ 𝜓 ∨ 𝜒) |
| Colors of variables: wff setvar class |
| Syntax hints: ∨ wo 383 ∨ w3o 1036 ℲwnfOLD 1709 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-10 2019 ax-12 2047 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-3or 1038 df-ex 1705 df-nf 1710 df-nfOLD 1721 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |