| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nf6 | Structured version Visualization version GIF version | ||
| Description: An alternate definition of df-nf 1710. (Contributed by Mario Carneiro, 24-Sep-2016.) |
| Ref | Expression |
|---|---|
| nf6 | ⊢ (Ⅎ𝑥𝜑 ↔ ∀𝑥(∃𝑥𝜑 → 𝜑)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-nf 1710 | . 2 ⊢ (Ⅎ𝑥𝜑 ↔ (∃𝑥𝜑 → ∀𝑥𝜑)) | |
| 2 | nfe1 2027 | . . 3 ⊢ Ⅎ𝑥∃𝑥𝜑 | |
| 3 | 2 | 19.21 2075 | . 2 ⊢ (∀𝑥(∃𝑥𝜑 → 𝜑) ↔ (∃𝑥𝜑 → ∀𝑥𝜑)) |
| 4 | 1, 3 | bitr4i 267 | 1 ⊢ (Ⅎ𝑥𝜑 ↔ ∀𝑥(∃𝑥𝜑 → 𝜑)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 196 ∀wal 1481 ∃wex 1704 Ⅎwnf 1708 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-10 2019 ax-12 2047 |
| This theorem depends on definitions: df-bi 197 df-ex 1705 df-nf 1710 |
| This theorem is referenced by: eusv2nf 4864 xfree 29303 |
| Copyright terms: Public domain | W3C validator |