MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfanOLDOLD Structured version   Visualization version   GIF version

Theorem nfanOLDOLD 2237
Description: Obsolete proof of nfan 1828 as of 6-Oct-2021. (Contributed by Mario Carneiro, 11-Aug-2016.) (Proof shortened by Wolf Lammen, 13-Jan-2018.) (Proof modification is discouraged.) (New usage is discouraged.)
Hypotheses
Ref Expression
nfanOLDOLD.1 𝑥𝜑
nfanOLDOLD.2 𝑥𝜓
Assertion
Ref Expression
nfanOLDOLD 𝑥(𝜑𝜓)

Proof of Theorem nfanOLDOLD
StepHypRef Expression
1 nfanOLDOLD.1 . 2 𝑥𝜑
2 nfanOLDOLD.2 . . 3 𝑥𝜓
32a1i 11 . 2 (𝜑 → Ⅎ𝑥𝜓)
41, 3nfan1OLD 2236 1 𝑥(𝜑𝜓)
Colors of variables: wff setvar class
Syntax hints:  wa 384  wnfOLD 1709
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-12 2047
This theorem depends on definitions:  df-bi 197  df-an 386  df-ex 1705  df-nfOLD 1721
This theorem is referenced by:  nfnanOLD  2238  nf3anOLD  2239  hbanOLD  2240
  Copyright terms: Public domain W3C validator