![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nfanOLDOLD | Structured version Visualization version GIF version |
Description: Obsolete proof of nfan 1828 as of 6-Oct-2021. (Contributed by Mario Carneiro, 11-Aug-2016.) (Proof shortened by Wolf Lammen, 13-Jan-2018.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
nfanOLDOLD.1 | ⊢ Ⅎ𝑥𝜑 |
nfanOLDOLD.2 | ⊢ Ⅎ𝑥𝜓 |
Ref | Expression |
---|---|
nfanOLDOLD | ⊢ Ⅎ𝑥(𝜑 ∧ 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfanOLDOLD.1 | . 2 ⊢ Ⅎ𝑥𝜑 | |
2 | nfanOLDOLD.2 | . . 3 ⊢ Ⅎ𝑥𝜓 | |
3 | 2 | a1i 11 | . 2 ⊢ (𝜑 → Ⅎ𝑥𝜓) |
4 | 1, 3 | nfan1OLD 2236 | 1 ⊢ Ⅎ𝑥(𝜑 ∧ 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 384 ℲwnfOLD 1709 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-12 2047 |
This theorem depends on definitions: df-bi 197 df-an 386 df-ex 1705 df-nfOLD 1721 |
This theorem is referenced by: nfnanOLD 2238 nf3anOLD 2239 hbanOLD 2240 |
Copyright terms: Public domain | W3C validator |