| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nfnanOLD | Structured version Visualization version GIF version | ||
| Description: Obsolete proof of nfnan 1830 as of 6-Oct-2021. (Contributed by Scott Fenton, 2-Jan-2018.) (Proof modification is discouraged.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| nfanOLDOLD.1 | ⊢ Ⅎ𝑥𝜑 |
| nfanOLDOLD.2 | ⊢ Ⅎ𝑥𝜓 |
| Ref | Expression |
|---|---|
| nfnanOLD | ⊢ Ⅎ𝑥(𝜑 ⊼ 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-nan 1448 | . 2 ⊢ ((𝜑 ⊼ 𝜓) ↔ ¬ (𝜑 ∧ 𝜓)) | |
| 2 | nfanOLDOLD.1 | . . . 4 ⊢ Ⅎ𝑥𝜑 | |
| 3 | nfanOLDOLD.2 | . . . 4 ⊢ Ⅎ𝑥𝜓 | |
| 4 | 2, 3 | nfanOLDOLD 2237 | . . 3 ⊢ Ⅎ𝑥(𝜑 ∧ 𝜓) |
| 5 | 4 | nfnOLD 2210 | . 2 ⊢ Ⅎ𝑥 ¬ (𝜑 ∧ 𝜓) |
| 6 | 1, 5 | nfxfrOLD 1837 | 1 ⊢ Ⅎ𝑥(𝜑 ⊼ 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ∧ wa 384 ⊼ wnan 1447 ℲwnfOLD 1709 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-10 2019 ax-12 2047 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-nan 1448 df-ex 1705 df-nf 1710 df-nfOLD 1721 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |