| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nfandOLD | Structured version Visualization version GIF version | ||
| Description: Obsolete proof of nfand 1826 as of 6-Oct-2021. (Contributed by Mario Carneiro, 7-Oct-2016.) (New usage is discouraged.) (Proof modification is discouraged.) |
| Ref | Expression |
|---|---|
| nfandOLD.1 | ⊢ (𝜑 → Ⅎ𝑥𝜓) |
| nfandOLD.2 | ⊢ (𝜑 → Ⅎ𝑥𝜒) |
| Ref | Expression |
|---|---|
| nfandOLD | ⊢ (𝜑 → Ⅎ𝑥(𝜓 ∧ 𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-an 386 | . 2 ⊢ ((𝜓 ∧ 𝜒) ↔ ¬ (𝜓 → ¬ 𝜒)) | |
| 2 | nfandOLD.1 | . . . 4 ⊢ (𝜑 → Ⅎ𝑥𝜓) | |
| 3 | nfandOLD.2 | . . . . 5 ⊢ (𝜑 → Ⅎ𝑥𝜒) | |
| 4 | 3 | nfndOLD 2211 | . . . 4 ⊢ (𝜑 → Ⅎ𝑥 ¬ 𝜒) |
| 5 | 2, 4 | nfimdOLD 2226 | . . 3 ⊢ (𝜑 → Ⅎ𝑥(𝜓 → ¬ 𝜒)) |
| 6 | 5 | nfndOLD 2211 | . 2 ⊢ (𝜑 → Ⅎ𝑥 ¬ (𝜓 → ¬ 𝜒)) |
| 7 | 1, 6 | nfxfrdOLD 1838 | 1 ⊢ (𝜑 → Ⅎ𝑥(𝜓 ∧ 𝜒)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 384 ℲwnfOLD 1709 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-10 2019 ax-12 2047 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-ex 1705 df-nf 1710 df-nfOLD 1721 |
| This theorem is referenced by: nf3andOLD 2233 nfbidOLD 2242 |
| Copyright terms: Public domain | W3C validator |