MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfbiiOLD Structured version   Visualization version   GIF version

Theorem nfbiiOLD 1836
Description: Obsolete proof of nfbii 1778 as of 6-Oct-2021. (Contributed by Mario Carneiro, 11-Aug-2016.) (Proof modification is discouraged.) (New usage is discouraged.)
Hypothesis
Ref Expression
nfbiiOLD.1 (𝜑𝜓)
Assertion
Ref Expression
nfbiiOLD (Ⅎ𝑥𝜑 ↔ Ⅎ𝑥𝜓)

Proof of Theorem nfbiiOLD
StepHypRef Expression
1 nfbiiOLD.1 . . . 4 (𝜑𝜓)
21albii 1747 . . . 4 (∀𝑥𝜑 ↔ ∀𝑥𝜓)
31, 2imbi12i 340 . . 3 ((𝜑 → ∀𝑥𝜑) ↔ (𝜓 → ∀𝑥𝜓))
43albii 1747 . 2 (∀𝑥(𝜑 → ∀𝑥𝜑) ↔ ∀𝑥(𝜓 → ∀𝑥𝜓))
5 df-nfOLD 1721 . 2 (Ⅎ𝑥𝜑 ↔ ∀𝑥(𝜑 → ∀𝑥𝜑))
6 df-nfOLD 1721 . 2 (Ⅎ𝑥𝜓 ↔ ∀𝑥(𝜓 → ∀𝑥𝜓))
74, 5, 63bitr4i 292 1 (Ⅎ𝑥𝜑 ↔ Ⅎ𝑥𝜓)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wal 1481  wnfOLD 1709
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737
This theorem depends on definitions:  df-bi 197  df-nfOLD 1721
This theorem is referenced by:  nfxfrOLD  1837  nfxfrdOLD  1838
  Copyright terms: Public domain W3C validator