![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > imbi12i | Structured version Visualization version GIF version |
Description: Join two logical equivalences to form equivalence of implications. (Contributed by NM, 1-Aug-1993.) |
Ref | Expression |
---|---|
imbi12i.1 | ⊢ (𝜑 ↔ 𝜓) |
imbi12i.2 | ⊢ (𝜒 ↔ 𝜃) |
Ref | Expression |
---|---|
imbi12i | ⊢ ((𝜑 → 𝜒) ↔ (𝜓 → 𝜃)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | imbi12i.1 | . 2 ⊢ (𝜑 ↔ 𝜓) | |
2 | imbi12i.2 | . 2 ⊢ (𝜒 ↔ 𝜃) | |
3 | imbi12 336 | . 2 ⊢ ((𝜑 ↔ 𝜓) → ((𝜒 ↔ 𝜃) → ((𝜑 → 𝜒) ↔ (𝜓 → 𝜃)))) | |
4 | 1, 2, 3 | mp2 9 | 1 ⊢ ((𝜑 → 𝜒) ↔ (𝜓 → 𝜃)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 197 |
This theorem is referenced by: orimdi 892 nanbi 1454 rb-bijust 1674 nfbiiOLD 1836 sbnf2 2439 sb8mo 2504 cbvmo 2506 raleqbii 2990 rmo5 3162 cbvrmo 3170 ss2ab 3670 sbcssg 4085 trint 4768 ssextss 4922 relop 5272 dmcosseq 5387 cotrg 5507 issref 5509 cnvsym 5510 intasym 5511 intirr 5514 codir 5516 qfto 5517 cnvpo 5673 dff14a 6527 porpss 6941 funcnvuni 7119 poxp 7289 infcllem 8393 cp 8754 aceq2 8942 kmlem12 8983 kmlem15 8986 zfcndpow 9438 grothprim 9656 dfinfre 11004 infrenegsup 11006 xrinfmss2 12141 algcvgblem 15290 isprm2 15395 oduglb 17139 odulub 17141 isirred2 18701 isdomn2 19299 ntreq0 20881 ist0-3 21149 ist1-3 21153 ordthaus 21188 dfconn2 21222 iscusp2 22106 mdsymlem8 29269 mo5f 29324 iuninc 29379 suppss2f 29439 tosglblem 29669 esumpfinvalf 30138 bnj110 30928 bnj92 30932 bnj539 30961 bnj540 30962 axrepprim 31579 axacprim 31584 dffr5 31643 dfso2 31644 dfpo2 31645 elpotr 31686 gtinfOLD 32314 bj-alcomexcom 32670 itg2addnclem2 33462 isdmn3 33873 sbcimi 33912 ssrel3 34067 inxpss3 34084 moxfr 37255 isdomn3 37782 ifpim123g 37845 elmapintrab 37882 undmrnresiss 37910 cnvssco 37912 snhesn 38080 psshepw 38082 frege77 38234 frege93 38250 frege116 38273 frege118 38275 frege131 38288 frege133 38290 ntrneikb 38392 conss34OLD 38646 onfrALTlem5 38757 onfrALTlem5VD 39121 |
Copyright terms: Public domain | W3C validator |