| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nfbrd | Structured version Visualization version GIF version | ||
| Description: Deduction version of bound-variable hypothesis builder nfbr 4699. (Contributed by NM, 13-Dec-2005.) (Revised by Mario Carneiro, 14-Oct-2016.) |
| Ref | Expression |
|---|---|
| nfbrd.2 | ⊢ (𝜑 → Ⅎ𝑥𝐴) |
| nfbrd.3 | ⊢ (𝜑 → Ⅎ𝑥𝑅) |
| nfbrd.4 | ⊢ (𝜑 → Ⅎ𝑥𝐵) |
| Ref | Expression |
|---|---|
| nfbrd | ⊢ (𝜑 → Ⅎ𝑥 𝐴𝑅𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-br 4654 | . 2 ⊢ (𝐴𝑅𝐵 ↔ 〈𝐴, 𝐵〉 ∈ 𝑅) | |
| 2 | nfbrd.2 | . . . 4 ⊢ (𝜑 → Ⅎ𝑥𝐴) | |
| 3 | nfbrd.4 | . . . 4 ⊢ (𝜑 → Ⅎ𝑥𝐵) | |
| 4 | 2, 3 | nfopd 4419 | . . 3 ⊢ (𝜑 → Ⅎ𝑥〈𝐴, 𝐵〉) |
| 5 | nfbrd.3 | . . 3 ⊢ (𝜑 → Ⅎ𝑥𝑅) | |
| 6 | 4, 5 | nfeld 2773 | . 2 ⊢ (𝜑 → Ⅎ𝑥〈𝐴, 𝐵〉 ∈ 𝑅) |
| 7 | 1, 6 | nfxfrd 1780 | 1 ⊢ (𝜑 → Ⅎ𝑥 𝐴𝑅𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 Ⅎwnf 1708 ∈ wcel 1990 Ⅎwnfc 2751 〈cop 4183 class class class wbr 4653 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-rab 2921 df-v 3202 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-sn 4178 df-pr 4180 df-op 4184 df-br 4654 |
| This theorem is referenced by: nfbr 4699 |
| Copyright terms: Public domain | W3C validator |