MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfbrd Structured version   Visualization version   GIF version

Theorem nfbrd 4698
Description: Deduction version of bound-variable hypothesis builder nfbr 4699. (Contributed by NM, 13-Dec-2005.) (Revised by Mario Carneiro, 14-Oct-2016.)
Hypotheses
Ref Expression
nfbrd.2 (𝜑𝑥𝐴)
nfbrd.3 (𝜑𝑥𝑅)
nfbrd.4 (𝜑𝑥𝐵)
Assertion
Ref Expression
nfbrd (𝜑 → Ⅎ𝑥 𝐴𝑅𝐵)

Proof of Theorem nfbrd
StepHypRef Expression
1 df-br 4654 . 2 (𝐴𝑅𝐵 ↔ ⟨𝐴, 𝐵⟩ ∈ 𝑅)
2 nfbrd.2 . . . 4 (𝜑𝑥𝐴)
3 nfbrd.4 . . . 4 (𝜑𝑥𝐵)
42, 3nfopd 4419 . . 3 (𝜑𝑥𝐴, 𝐵⟩)
5 nfbrd.3 . . 3 (𝜑𝑥𝑅)
64, 5nfeld 2773 . 2 (𝜑 → Ⅎ𝑥𝐴, 𝐵⟩ ∈ 𝑅)
71, 6nfxfrd 1780 1 (𝜑 → Ⅎ𝑥 𝐴𝑅𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wnf 1708  wcel 1990  wnfc 2751  cop 4183   class class class wbr 4653
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-rab 2921  df-v 3202  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-br 4654
This theorem is referenced by:  nfbr  4699
  Copyright terms: Public domain W3C validator