| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nfpo | Structured version Visualization version GIF version | ||
| Description: Bound-variable hypothesis builder for partial orders. (Contributed by Stefan O'Rear, 20-Jan-2015.) |
| Ref | Expression |
|---|---|
| nfpo.r | ⊢ Ⅎ𝑥𝑅 |
| nfpo.a | ⊢ Ⅎ𝑥𝐴 |
| Ref | Expression |
|---|---|
| nfpo | ⊢ Ⅎ𝑥 𝑅 Po 𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-po 5035 | . 2 ⊢ (𝑅 Po 𝐴 ↔ ∀𝑎 ∈ 𝐴 ∀𝑏 ∈ 𝐴 ∀𝑐 ∈ 𝐴 (¬ 𝑎𝑅𝑎 ∧ ((𝑎𝑅𝑏 ∧ 𝑏𝑅𝑐) → 𝑎𝑅𝑐))) | |
| 2 | nfpo.a | . . 3 ⊢ Ⅎ𝑥𝐴 | |
| 3 | nfcv 2764 | . . . . . . . 8 ⊢ Ⅎ𝑥𝑎 | |
| 4 | nfpo.r | . . . . . . . 8 ⊢ Ⅎ𝑥𝑅 | |
| 5 | 3, 4, 3 | nfbr 4699 | . . . . . . 7 ⊢ Ⅎ𝑥 𝑎𝑅𝑎 |
| 6 | 5 | nfn 1784 | . . . . . 6 ⊢ Ⅎ𝑥 ¬ 𝑎𝑅𝑎 |
| 7 | nfcv 2764 | . . . . . . . . 9 ⊢ Ⅎ𝑥𝑏 | |
| 8 | 3, 4, 7 | nfbr 4699 | . . . . . . . 8 ⊢ Ⅎ𝑥 𝑎𝑅𝑏 |
| 9 | nfcv 2764 | . . . . . . . . 9 ⊢ Ⅎ𝑥𝑐 | |
| 10 | 7, 4, 9 | nfbr 4699 | . . . . . . . 8 ⊢ Ⅎ𝑥 𝑏𝑅𝑐 |
| 11 | 8, 10 | nfan 1828 | . . . . . . 7 ⊢ Ⅎ𝑥(𝑎𝑅𝑏 ∧ 𝑏𝑅𝑐) |
| 12 | 3, 4, 9 | nfbr 4699 | . . . . . . 7 ⊢ Ⅎ𝑥 𝑎𝑅𝑐 |
| 13 | 11, 12 | nfim 1825 | . . . . . 6 ⊢ Ⅎ𝑥((𝑎𝑅𝑏 ∧ 𝑏𝑅𝑐) → 𝑎𝑅𝑐) |
| 14 | 6, 13 | nfan 1828 | . . . . 5 ⊢ Ⅎ𝑥(¬ 𝑎𝑅𝑎 ∧ ((𝑎𝑅𝑏 ∧ 𝑏𝑅𝑐) → 𝑎𝑅𝑐)) |
| 15 | 2, 14 | nfral 2945 | . . . 4 ⊢ Ⅎ𝑥∀𝑐 ∈ 𝐴 (¬ 𝑎𝑅𝑎 ∧ ((𝑎𝑅𝑏 ∧ 𝑏𝑅𝑐) → 𝑎𝑅𝑐)) |
| 16 | 2, 15 | nfral 2945 | . . 3 ⊢ Ⅎ𝑥∀𝑏 ∈ 𝐴 ∀𝑐 ∈ 𝐴 (¬ 𝑎𝑅𝑎 ∧ ((𝑎𝑅𝑏 ∧ 𝑏𝑅𝑐) → 𝑎𝑅𝑐)) |
| 17 | 2, 16 | nfral 2945 | . 2 ⊢ Ⅎ𝑥∀𝑎 ∈ 𝐴 ∀𝑏 ∈ 𝐴 ∀𝑐 ∈ 𝐴 (¬ 𝑎𝑅𝑎 ∧ ((𝑎𝑅𝑏 ∧ 𝑏𝑅𝑐) → 𝑎𝑅𝑐)) |
| 18 | 1, 17 | nfxfr 1779 | 1 ⊢ Ⅎ𝑥 𝑅 Po 𝐴 |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 384 Ⅎwnf 1708 Ⅎwnfc 2751 ∀wral 2912 class class class wbr 4653 Po wpo 5033 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ral 2917 df-rab 2921 df-v 3202 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-sn 4178 df-pr 4180 df-op 4184 df-br 4654 df-po 5035 |
| This theorem is referenced by: nfso 5041 |
| Copyright terms: Public domain | W3C validator |