| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nfrmod | Structured version Visualization version GIF version | ||
| Description: Deduction version of nfrmo 3115. (Contributed by NM, 17-Jun-2017.) |
| Ref | Expression |
|---|---|
| nfreud.1 | ⊢ Ⅎ𝑦𝜑 |
| nfreud.2 | ⊢ (𝜑 → Ⅎ𝑥𝐴) |
| nfreud.3 | ⊢ (𝜑 → Ⅎ𝑥𝜓) |
| Ref | Expression |
|---|---|
| nfrmod | ⊢ (𝜑 → Ⅎ𝑥∃*𝑦 ∈ 𝐴 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-rmo 2920 | . 2 ⊢ (∃*𝑦 ∈ 𝐴 𝜓 ↔ ∃*𝑦(𝑦 ∈ 𝐴 ∧ 𝜓)) | |
| 2 | nfreud.1 | . . 3 ⊢ Ⅎ𝑦𝜑 | |
| 3 | nfcvf 2788 | . . . . . 6 ⊢ (¬ ∀𝑥 𝑥 = 𝑦 → Ⅎ𝑥𝑦) | |
| 4 | 3 | adantl 482 | . . . . 5 ⊢ ((𝜑 ∧ ¬ ∀𝑥 𝑥 = 𝑦) → Ⅎ𝑥𝑦) |
| 5 | nfreud.2 | . . . . . 6 ⊢ (𝜑 → Ⅎ𝑥𝐴) | |
| 6 | 5 | adantr 481 | . . . . 5 ⊢ ((𝜑 ∧ ¬ ∀𝑥 𝑥 = 𝑦) → Ⅎ𝑥𝐴) |
| 7 | 4, 6 | nfeld 2773 | . . . 4 ⊢ ((𝜑 ∧ ¬ ∀𝑥 𝑥 = 𝑦) → Ⅎ𝑥 𝑦 ∈ 𝐴) |
| 8 | nfreud.3 | . . . . 5 ⊢ (𝜑 → Ⅎ𝑥𝜓) | |
| 9 | 8 | adantr 481 | . . . 4 ⊢ ((𝜑 ∧ ¬ ∀𝑥 𝑥 = 𝑦) → Ⅎ𝑥𝜓) |
| 10 | 7, 9 | nfand 1826 | . . 3 ⊢ ((𝜑 ∧ ¬ ∀𝑥 𝑥 = 𝑦) → Ⅎ𝑥(𝑦 ∈ 𝐴 ∧ 𝜓)) |
| 11 | 2, 10 | nfmod2 2483 | . 2 ⊢ (𝜑 → Ⅎ𝑥∃*𝑦(𝑦 ∈ 𝐴 ∧ 𝜓)) |
| 12 | 1, 11 | nfxfrd 1780 | 1 ⊢ (𝜑 → Ⅎ𝑥∃*𝑦 ∈ 𝐴 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 384 ∀wal 1481 Ⅎwnf 1708 ∈ wcel 1990 ∃*wmo 2471 Ⅎwnfc 2751 ∃*wrmo 2915 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-tru 1486 df-ex 1705 df-nf 1710 df-eu 2474 df-mo 2475 df-cleq 2615 df-clel 2618 df-nfc 2753 df-rmo 2920 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |