![]() |
Mathbox for Emmett Weisz |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > nfsetrecs | Structured version Visualization version GIF version |
Description: Bound-variable hypothesis builder for setrecs. (Contributed by Emmett Weisz, 21-Oct-2021.) |
Ref | Expression |
---|---|
nfsetrecs.1 | ⊢ Ⅎ𝑥𝐹 |
Ref | Expression |
---|---|
nfsetrecs | ⊢ Ⅎ𝑥setrecs(𝐹) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-setrecs 42431 | . 2 ⊢ setrecs(𝐹) = ∪ {𝑦 ∣ ∀𝑧(∀𝑤(𝑤 ⊆ 𝑦 → (𝑤 ⊆ 𝑧 → (𝐹‘𝑤) ⊆ 𝑧)) → 𝑦 ⊆ 𝑧)} | |
2 | nfv 1843 | . . . . . . . 8 ⊢ Ⅎ𝑥 𝑤 ⊆ 𝑦 | |
3 | nfv 1843 | . . . . . . . . 9 ⊢ Ⅎ𝑥 𝑤 ⊆ 𝑧 | |
4 | nfsetrecs.1 | . . . . . . . . . . 11 ⊢ Ⅎ𝑥𝐹 | |
5 | nfcv 2764 | . . . . . . . . . . 11 ⊢ Ⅎ𝑥𝑤 | |
6 | 4, 5 | nffv 6198 | . . . . . . . . . 10 ⊢ Ⅎ𝑥(𝐹‘𝑤) |
7 | nfcv 2764 | . . . . . . . . . 10 ⊢ Ⅎ𝑥𝑧 | |
8 | 6, 7 | nfss 3596 | . . . . . . . . 9 ⊢ Ⅎ𝑥(𝐹‘𝑤) ⊆ 𝑧 |
9 | 3, 8 | nfim 1825 | . . . . . . . 8 ⊢ Ⅎ𝑥(𝑤 ⊆ 𝑧 → (𝐹‘𝑤) ⊆ 𝑧) |
10 | 2, 9 | nfim 1825 | . . . . . . 7 ⊢ Ⅎ𝑥(𝑤 ⊆ 𝑦 → (𝑤 ⊆ 𝑧 → (𝐹‘𝑤) ⊆ 𝑧)) |
11 | 10 | nfal 2153 | . . . . . 6 ⊢ Ⅎ𝑥∀𝑤(𝑤 ⊆ 𝑦 → (𝑤 ⊆ 𝑧 → (𝐹‘𝑤) ⊆ 𝑧)) |
12 | nfv 1843 | . . . . . 6 ⊢ Ⅎ𝑥 𝑦 ⊆ 𝑧 | |
13 | 11, 12 | nfim 1825 | . . . . 5 ⊢ Ⅎ𝑥(∀𝑤(𝑤 ⊆ 𝑦 → (𝑤 ⊆ 𝑧 → (𝐹‘𝑤) ⊆ 𝑧)) → 𝑦 ⊆ 𝑧) |
14 | 13 | nfal 2153 | . . . 4 ⊢ Ⅎ𝑥∀𝑧(∀𝑤(𝑤 ⊆ 𝑦 → (𝑤 ⊆ 𝑧 → (𝐹‘𝑤) ⊆ 𝑧)) → 𝑦 ⊆ 𝑧) |
15 | 14 | nfab 2769 | . . 3 ⊢ Ⅎ𝑥{𝑦 ∣ ∀𝑧(∀𝑤(𝑤 ⊆ 𝑦 → (𝑤 ⊆ 𝑧 → (𝐹‘𝑤) ⊆ 𝑧)) → 𝑦 ⊆ 𝑧)} |
16 | 15 | nfuni 4442 | . 2 ⊢ Ⅎ𝑥∪ {𝑦 ∣ ∀𝑧(∀𝑤(𝑤 ⊆ 𝑦 → (𝑤 ⊆ 𝑧 → (𝐹‘𝑤) ⊆ 𝑧)) → 𝑦 ⊆ 𝑧)} |
17 | 1, 16 | nfcxfr 2762 | 1 ⊢ Ⅎ𝑥setrecs(𝐹) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∀wal 1481 {cab 2608 Ⅎwnfc 2751 ⊆ wss 3574 ∪ cuni 4436 ‘cfv 5888 setrecscsetrecs 42430 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-br 4654 df-iota 5851 df-fv 5896 df-setrecs 42431 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |