Users' Mathboxes Mathbox for Emmett Weisz < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  nfsetrecs Structured version   Visualization version   GIF version

Theorem nfsetrecs 42433
Description: Bound-variable hypothesis builder for setrecs. (Contributed by Emmett Weisz, 21-Oct-2021.)
Hypothesis
Ref Expression
nfsetrecs.1 𝑥𝐹
Assertion
Ref Expression
nfsetrecs 𝑥setrecs(𝐹)

Proof of Theorem nfsetrecs
Dummy variables 𝑦 𝑧 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-setrecs 42431 . 2 setrecs(𝐹) = {𝑦 ∣ ∀𝑧(∀𝑤(𝑤𝑦 → (𝑤𝑧 → (𝐹𝑤) ⊆ 𝑧)) → 𝑦𝑧)}
2 nfv 1843 . . . . . . . 8 𝑥 𝑤𝑦
3 nfv 1843 . . . . . . . . 9 𝑥 𝑤𝑧
4 nfsetrecs.1 . . . . . . . . . . 11 𝑥𝐹
5 nfcv 2764 . . . . . . . . . . 11 𝑥𝑤
64, 5nffv 6198 . . . . . . . . . 10 𝑥(𝐹𝑤)
7 nfcv 2764 . . . . . . . . . 10 𝑥𝑧
86, 7nfss 3596 . . . . . . . . 9 𝑥(𝐹𝑤) ⊆ 𝑧
93, 8nfim 1825 . . . . . . . 8 𝑥(𝑤𝑧 → (𝐹𝑤) ⊆ 𝑧)
102, 9nfim 1825 . . . . . . 7 𝑥(𝑤𝑦 → (𝑤𝑧 → (𝐹𝑤) ⊆ 𝑧))
1110nfal 2153 . . . . . 6 𝑥𝑤(𝑤𝑦 → (𝑤𝑧 → (𝐹𝑤) ⊆ 𝑧))
12 nfv 1843 . . . . . 6 𝑥 𝑦𝑧
1311, 12nfim 1825 . . . . 5 𝑥(∀𝑤(𝑤𝑦 → (𝑤𝑧 → (𝐹𝑤) ⊆ 𝑧)) → 𝑦𝑧)
1413nfal 2153 . . . 4 𝑥𝑧(∀𝑤(𝑤𝑦 → (𝑤𝑧 → (𝐹𝑤) ⊆ 𝑧)) → 𝑦𝑧)
1514nfab 2769 . . 3 𝑥{𝑦 ∣ ∀𝑧(∀𝑤(𝑤𝑦 → (𝑤𝑧 → (𝐹𝑤) ⊆ 𝑧)) → 𝑦𝑧)}
1615nfuni 4442 . 2 𝑥 {𝑦 ∣ ∀𝑧(∀𝑤(𝑤𝑦 → (𝑤𝑧 → (𝐹𝑤) ⊆ 𝑧)) → 𝑦𝑧)}
171, 16nfcxfr 2762 1 𝑥setrecs(𝐹)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wal 1481  {cab 2608  wnfc 2751  wss 3574   cuni 4436  cfv 5888  setrecscsetrecs 42430
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-iota 5851  df-fv 5896  df-setrecs 42431
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator