| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > opeldmd | Structured version Visualization version GIF version | ||
| Description: Membership of first of an ordered pair in a domain. Deduction version of opeldm 5328. (Contributed by AV, 11-Mar-2021.) |
| Ref | Expression |
|---|---|
| opeldmd.1 | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
| opeldmd.2 | ⊢ (𝜑 → 𝐵 ∈ 𝑊) |
| Ref | Expression |
|---|---|
| opeldmd | ⊢ (𝜑 → (〈𝐴, 𝐵〉 ∈ 𝐶 → 𝐴 ∈ dom 𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | opeldmd.2 | . . 3 ⊢ (𝜑 → 𝐵 ∈ 𝑊) | |
| 2 | opeq2 4403 | . . . . 5 ⊢ (𝑦 = 𝐵 → 〈𝐴, 𝑦〉 = 〈𝐴, 𝐵〉) | |
| 3 | 2 | eleq1d 2686 | . . . 4 ⊢ (𝑦 = 𝐵 → (〈𝐴, 𝑦〉 ∈ 𝐶 ↔ 〈𝐴, 𝐵〉 ∈ 𝐶)) |
| 4 | 3 | spcegv 3294 | . . 3 ⊢ (𝐵 ∈ 𝑊 → (〈𝐴, 𝐵〉 ∈ 𝐶 → ∃𝑦〈𝐴, 𝑦〉 ∈ 𝐶)) |
| 5 | 1, 4 | syl 17 | . 2 ⊢ (𝜑 → (〈𝐴, 𝐵〉 ∈ 𝐶 → ∃𝑦〈𝐴, 𝑦〉 ∈ 𝐶)) |
| 6 | opeldmd.1 | . . 3 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
| 7 | eldm2g 5320 | . . 3 ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ dom 𝐶 ↔ ∃𝑦〈𝐴, 𝑦〉 ∈ 𝐶)) | |
| 8 | 6, 7 | syl 17 | . 2 ⊢ (𝜑 → (𝐴 ∈ dom 𝐶 ↔ ∃𝑦〈𝐴, 𝑦〉 ∈ 𝐶)) |
| 9 | 5, 8 | sylibrd 249 | 1 ⊢ (𝜑 → (〈𝐴, 𝐵〉 ∈ 𝐶 → 𝐴 ∈ dom 𝐶)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 196 = wceq 1483 ∃wex 1704 ∈ wcel 1990 〈cop 4183 dom cdm 5114 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-rab 2921 df-v 3202 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-sn 4178 df-pr 4180 df-op 4184 df-br 4654 df-dm 5124 |
| This theorem is referenced by: eupth2eucrct 27077 |
| Copyright terms: Public domain | W3C validator |