| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > orcs | Structured version Visualization version GIF version | ||
| Description: Deduction eliminating disjunct. Notational convention: We sometimes suffix with "s" the label of an inference that manipulates an antecedent, leaving the consequent unchanged. The "s" means that the inference eliminates the need for a syllogism (syl 17) -type inference in a proof. (Contributed by NM, 21-Jun-1994.) |
| Ref | Expression |
|---|---|
| orcs.1 | ⊢ ((𝜑 ∨ 𝜓) → 𝜒) |
| Ref | Expression |
|---|---|
| orcs | ⊢ (𝜑 → 𝜒) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | orc 400 | . 2 ⊢ (𝜑 → (𝜑 ∨ 𝜓)) | |
| 2 | orcs.1 | . 2 ⊢ ((𝜑 ∨ 𝜓) → 𝜒) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → 𝜒) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∨ wo 383 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 197 df-or 385 |
| This theorem is referenced by: olcs 410 ifor 4135 tppreqb 4336 frxp 7287 mndifsplit 20442 maducoeval2 20446 leibpilem2 24668 leibpi 24669 3o1cs 29309 3o2cs 29310 poimirlem31 33440 tsan2 33949 frege114d 38050 ntrneiel2 38384 nnfoctbdjlem 40672 |
| Copyright terms: Public domain | W3C validator |