| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > olcs | Structured version Visualization version GIF version | ||
| Description: Deduction eliminating disjunct. (Contributed by NM, 21-Jun-1994.) (Proof shortened by Wolf Lammen, 3-Oct-2013.) |
| Ref | Expression |
|---|---|
| olcs.1 | ⊢ ((𝜑 ∨ 𝜓) → 𝜒) |
| Ref | Expression |
|---|---|
| olcs | ⊢ (𝜓 → 𝜒) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | olcs.1 | . . 3 ⊢ ((𝜑 ∨ 𝜓) → 𝜒) | |
| 2 | 1 | orcoms 404 | . 2 ⊢ ((𝜓 ∨ 𝜑) → 𝜒) |
| 3 | 2 | orcs 409 | 1 ⊢ (𝜓 → 𝜒) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∨ wo 383 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 197 df-or 385 |
| This theorem is referenced by: 0nn0 11307 fsum00 14530 pcfac 15603 mndifsplit 20442 bposlem2 25010 axcgrid 25796 3o2cs 29310 3o3cs 29311 fprodex01 29571 indsumin 30084 fsum2dsub 30685 finxpreclem2 33227 itg2addnclem 33461 tsan3 33950 |
| Copyright terms: Public domain | W3C validator |