| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ordfr | Structured version Visualization version GIF version | ||
| Description: Epsilon is well-founded on an ordinal class. (Contributed by NM, 22-Apr-1994.) |
| Ref | Expression |
|---|---|
| ordfr | ⊢ (Ord 𝐴 → E Fr 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ordwe 5736 | . 2 ⊢ (Ord 𝐴 → E We 𝐴) | |
| 2 | wefr 5104 | . 2 ⊢ ( E We 𝐴 → E Fr 𝐴) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (Ord 𝐴 → E Fr 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 E cep 5028 Fr wfr 5070 We wwe 5072 Ord word 5722 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 197 df-an 386 df-we 5075 df-ord 5726 |
| This theorem is referenced by: ordirr 5741 tz7.7 5749 onfr 5763 bnj580 30983 bnj1053 31044 bnj1071 31045 |
| Copyright terms: Public domain | W3C validator |