![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ordelss | Structured version Visualization version GIF version |
Description: An element of an ordinal class is a subset of it. (Contributed by NM, 30-May-1994.) |
Ref | Expression |
---|---|
ordelss | ⊢ ((Ord 𝐴 ∧ 𝐵 ∈ 𝐴) → 𝐵 ⊆ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ordtr 5737 | . 2 ⊢ (Ord 𝐴 → Tr 𝐴) | |
2 | trss 4761 | . . 3 ⊢ (Tr 𝐴 → (𝐵 ∈ 𝐴 → 𝐵 ⊆ 𝐴)) | |
3 | 2 | imp 445 | . 2 ⊢ ((Tr 𝐴 ∧ 𝐵 ∈ 𝐴) → 𝐵 ⊆ 𝐴) |
4 | 1, 3 | sylan 488 | 1 ⊢ ((Ord 𝐴 ∧ 𝐵 ∈ 𝐴) → 𝐵 ⊆ 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 384 ∈ wcel 1990 ⊆ wss 3574 Tr wtr 4752 Ord word 5722 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ral 2917 df-v 3202 df-in 3581 df-ss 3588 df-uni 4437 df-tr 4753 df-ord 5726 |
This theorem is referenced by: onfr 5763 onelss 5766 ordtri2or2 5823 onfununi 7438 smores3 7450 tfrlem1 7472 tfrlem9a 7482 tz7.44-2 7503 tz7.44-3 7504 oaabslem 7723 oaabs2 7725 omabslem 7726 omabs 7727 findcard3 8203 nnsdomg 8219 ordiso2 8420 ordtypelem2 8424 ordtypelem6 8428 ordtypelem7 8429 cantnf 8590 cnfcomlem 8596 cardmin2 8824 infxpenlem 8836 iunfictbso 8937 dfac12lem2 8966 dfac12lem3 8967 unctb 9027 ackbij2lem1 9041 ackbij1lem3 9044 ackbij1lem18 9059 ackbij2 9065 ttukeylem6 9336 ttukeylem7 9337 alephexp1 9401 fpwwe2lem8 9459 pwfseqlem3 9482 pwcdandom 9489 fz1isolem 13245 onsuct0 32440 finxpreclem4 33231 |
Copyright terms: Public domain | W3C validator |