MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  perftop Structured version   Visualization version   GIF version

Theorem perftop 20960
Description: A perfect space is a topology. (Contributed by Mario Carneiro, 25-Dec-2016.)
Assertion
Ref Expression
perftop (𝐽 ∈ Perf → 𝐽 ∈ Top)

Proof of Theorem perftop
StepHypRef Expression
1 eqid 2622 . . 3 𝐽 = 𝐽
21isperf 20955 . 2 (𝐽 ∈ Perf ↔ (𝐽 ∈ Top ∧ ((limPt‘𝐽)‘ 𝐽) = 𝐽))
32simplbi 476 1 (𝐽 ∈ Perf → 𝐽 ∈ Top)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1483  wcel 1990   cuni 4436  cfv 5888  Topctop 20698  limPtclp 20938  Perfcperf 20939
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-rex 2918  df-rab 2921  df-v 3202  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-iota 5851  df-fv 5896  df-perf 20941
This theorem is referenced by:  perfopn  20989
  Copyright terms: Public domain W3C validator