| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > pm13.18 | Structured version Visualization version GIF version | ||
| Description: Theorem *13.18 in [WhiteheadRussell] p. 178. (Contributed by Andrew Salmon, 3-Jun-2011.) |
| Ref | Expression |
|---|---|
| pm13.18 | ⊢ ((𝐴 = 𝐵 ∧ 𝐴 ≠ 𝐶) → 𝐵 ≠ 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqeq1 2626 | . . . 4 ⊢ (𝐴 = 𝐵 → (𝐴 = 𝐶 ↔ 𝐵 = 𝐶)) | |
| 2 | 1 | biimprd 238 | . . 3 ⊢ (𝐴 = 𝐵 → (𝐵 = 𝐶 → 𝐴 = 𝐶)) |
| 3 | 2 | necon3d 2815 | . 2 ⊢ (𝐴 = 𝐵 → (𝐴 ≠ 𝐶 → 𝐵 ≠ 𝐶)) |
| 4 | 3 | imp 445 | 1 ⊢ ((𝐴 = 𝐵 ∧ 𝐴 ≠ 𝐶) → 𝐵 ≠ 𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 384 = wceq 1483 ≠ wne 2794 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-ext 2602 |
| This theorem depends on definitions: df-bi 197 df-an 386 df-ex 1705 df-cleq 2615 df-ne 2795 |
| This theorem is referenced by: pm13.181 2876 frgrwopreglem5a 27175 4atexlemex4 35359 cncfiooicclem1 40106 |
| Copyright terms: Public domain | W3C validator |