MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pm13.181 Structured version   Visualization version   GIF version

Theorem pm13.181 2876
Description: Theorem *13.181 in [WhiteheadRussell] p. 178. (Contributed by Andrew Salmon, 3-Jun-2011.)
Assertion
Ref Expression
pm13.181 ((𝐴 = 𝐵𝐵𝐶) → 𝐴𝐶)

Proof of Theorem pm13.181
StepHypRef Expression
1 eqcom 2629 . 2 (𝐴 = 𝐵𝐵 = 𝐴)
2 pm13.18 2875 . 2 ((𝐵 = 𝐴𝐵𝐶) → 𝐴𝐶)
31, 2sylanb 489 1 ((𝐴 = 𝐵𝐵𝐶) → 𝐴𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384   = wceq 1483  wne 2794
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-ext 2602
This theorem depends on definitions:  df-bi 197  df-an 386  df-ex 1705  df-cleq 2615  df-ne 2795
This theorem is referenced by:  fzprval  12401  frgrwopreglem5a  27175  ax6e2ndeqALT  39167
  Copyright terms: Public domain W3C validator