| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > preqr2 | Structured version Visualization version GIF version | ||
| Description: Reverse equality lemma for unordered pairs. If two unordered pairs have the same first element, the second elements are equal. (Contributed by NM, 15-Jul-1993.) |
| Ref | Expression |
|---|---|
| preqr1.a | ⊢ 𝐴 ∈ V |
| preqr1.b | ⊢ 𝐵 ∈ V |
| Ref | Expression |
|---|---|
| preqr2 | ⊢ ({𝐶, 𝐴} = {𝐶, 𝐵} → 𝐴 = 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | prcom 4267 | . . 3 ⊢ {𝐶, 𝐴} = {𝐴, 𝐶} | |
| 2 | prcom 4267 | . . 3 ⊢ {𝐶, 𝐵} = {𝐵, 𝐶} | |
| 3 | 1, 2 | eqeq12i 2636 | . 2 ⊢ ({𝐶, 𝐴} = {𝐶, 𝐵} ↔ {𝐴, 𝐶} = {𝐵, 𝐶}) |
| 4 | preqr1.a | . . 3 ⊢ 𝐴 ∈ V | |
| 5 | preqr1.b | . . 3 ⊢ 𝐵 ∈ V | |
| 6 | 4, 5 | preqr1 4379 | . 2 ⊢ ({𝐴, 𝐶} = {𝐵, 𝐶} → 𝐴 = 𝐵) |
| 7 | 3, 6 | sylbi 207 | 1 ⊢ ({𝐶, 𝐴} = {𝐶, 𝐵} → 𝐴 = 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1483 ∈ wcel 1990 Vcvv 3200 {cpr 4179 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-v 3202 df-un 3579 df-sn 4178 df-pr 4180 |
| This theorem is referenced by: preq12b 4382 opth 4945 opthreg 8515 usgredgreu 26110 uspgredg2vtxeu 26112 altopthsn 32068 |
| Copyright terms: Public domain | W3C validator |