Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  qseq1i Structured version   Visualization version   GIF version

Theorem qseq1i 34054
Description: Equality theorem for quotient set, inference form. (Contributed by Peter Mazsa, 3-Jun-2021.)
Hypothesis
Ref Expression
qseq1i.1 𝐴 = 𝐵
Assertion
Ref Expression
qseq1i (𝐴 / 𝐶) = (𝐵 / 𝐶)

Proof of Theorem qseq1i
StepHypRef Expression
1 qseq1i.1 . 2 𝐴 = 𝐵
2 qseq1 7796 . 2 (𝐴 = 𝐵 → (𝐴 / 𝐶) = (𝐵 / 𝐶))
31, 2ax-mp 5 1 (𝐴 / 𝐶) = (𝐵 / 𝐶)
Colors of variables: wff setvar class
Syntax hints:   = wceq 1483   / cqs 7741
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-rex 2918  df-qs 7748
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator