![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > r19.21 | Structured version Visualization version GIF version |
Description: Restricted quantifier version of 19.21 2075. (Contributed by Scott Fenton, 30-Mar-2011.) |
Ref | Expression |
---|---|
r19.21.1 | ⊢ Ⅎ𝑥𝜑 |
Ref | Expression |
---|---|
r19.21 | ⊢ (∀𝑥 ∈ 𝐴 (𝜑 → 𝜓) ↔ (𝜑 → ∀𝑥 ∈ 𝐴 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | r19.21.1 | . 2 ⊢ Ⅎ𝑥𝜑 | |
2 | r19.21t 2955 | . 2 ⊢ (Ⅎ𝑥𝜑 → (∀𝑥 ∈ 𝐴 (𝜑 → 𝜓) ↔ (𝜑 → ∀𝑥 ∈ 𝐴 𝜓))) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ (∀𝑥 ∈ 𝐴 (𝜑 → 𝜓) ↔ (𝜑 → ∀𝑥 ∈ 𝐴 𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 Ⅎwnf 1708 ∀wral 2912 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-12 2047 |
This theorem depends on definitions: df-bi 197 df-ex 1705 df-nf 1710 df-ral 2917 |
This theorem is referenced by: ra4 3525 rmo3f 29335 rmo4fOLD 29336 r19.32 41167 rmoanim 41179 |
Copyright terms: Public domain | W3C validator |