| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > r19.21be | Structured version Visualization version GIF version | ||
| Description: Inference from Theorem 19.21 of [Margaris] p. 90. (Restricted quantifier version.) (Contributed by NM, 21-Nov-1994.) |
| Ref | Expression |
|---|---|
| r19.21be.1 | ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 𝜓) |
| Ref | Expression |
|---|---|
| r19.21be | ⊢ ∀𝑥 ∈ 𝐴 (𝜑 → 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | r19.21be.1 | . . . 4 ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 𝜓) | |
| 2 | 1 | r19.21bi 2932 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝜓) |
| 3 | 2 | expcom 451 | . 2 ⊢ (𝑥 ∈ 𝐴 → (𝜑 → 𝜓)) |
| 4 | 3 | rgen 2922 | 1 ⊢ ∀𝑥 ∈ 𝐴 (𝜑 → 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 1990 ∀wral 2912 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-12 2047 |
| This theorem depends on definitions: df-bi 197 df-an 386 df-ex 1705 df-ral 2917 |
| This theorem is referenced by: bnj580 30983 |
| Copyright terms: Public domain | W3C validator |