MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  r19.21be Structured version   Visualization version   Unicode version

Theorem r19.21be 2933
Description: Inference from Theorem 19.21 of [Margaris] p. 90. (Restricted quantifier version.) (Contributed by NM, 21-Nov-1994.)
Hypothesis
Ref Expression
r19.21be.1  |-  ( ph  ->  A. x  e.  A  ps )
Assertion
Ref Expression
r19.21be  |-  A. x  e.  A  ( ph  ->  ps )

Proof of Theorem r19.21be
StepHypRef Expression
1 r19.21be.1 . . . 4  |-  ( ph  ->  A. x  e.  A  ps )
21r19.21bi 2932 . . 3  |-  ( (
ph  /\  x  e.  A )  ->  ps )
32expcom 451 . 2  |-  ( x  e.  A  ->  ( ph  ->  ps ) )
43rgen 2922 1  |-  A. x  e.  A  ( ph  ->  ps )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    e. wcel 1990   A.wral 2912
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-12 2047
This theorem depends on definitions:  df-bi 197  df-an 386  df-ex 1705  df-ral 2917
This theorem is referenced by:  bnj580  30983
  Copyright terms: Public domain W3C validator