MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rabex2OLD Structured version   Visualization version   GIF version

Theorem rabex2OLD 4817
Description: Obsolete version of rabex2 4815 as of 26-Mar-2021. (Contributed by AV, 16-Jul-2019.) (Proof modification is discouraged.) (New usage is discouraged.)
Hypotheses
Ref Expression
rabex2OLD.1 𝐵 = {𝑥𝐴𝜓}
rabex2OLD.2 𝐴𝑉
Assertion
Ref Expression
rabex2OLD 𝐵 ∈ V
Distinct variable group:   𝑥,𝐴
Allowed substitution hints:   𝜓(𝑥)   𝐵(𝑥)   𝑉(𝑥)

Proof of Theorem rabex2OLD
StepHypRef Expression
1 rabex2OLD.2 . 2 𝐴𝑉
2 rabex2OLD.1 . . 3 𝐵 = {𝑥𝐴𝜓}
3 id 22 . . 3 (𝐴𝑉𝐴𝑉)
42, 3rabexd 4814 . 2 (𝐴𝑉𝐵 ∈ V)
51, 4ax-mp 5 1 𝐵 ∈ V
Colors of variables: wff setvar class
Syntax hints:   = wceq 1483  wcel 1990  {crab 2916  Vcvv 3200
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-rab 2921  df-v 3202  df-in 3581  df-ss 3588
This theorem is referenced by:  rab2exOLD  4818
  Copyright terms: Public domain W3C validator