MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rabun2 Structured version   Visualization version   GIF version

Theorem rabun2 3906
Description: Abstraction restricted to a union. (Contributed by Stefan O'Rear, 5-Feb-2015.)
Assertion
Ref Expression
rabun2 {𝑥 ∈ (𝐴𝐵) ∣ 𝜑} = ({𝑥𝐴𝜑} ∪ {𝑥𝐵𝜑})

Proof of Theorem rabun2
StepHypRef Expression
1 df-rab 2921 . 2 {𝑥 ∈ (𝐴𝐵) ∣ 𝜑} = {𝑥 ∣ (𝑥 ∈ (𝐴𝐵) ∧ 𝜑)}
2 df-rab 2921 . . . 4 {𝑥𝐴𝜑} = {𝑥 ∣ (𝑥𝐴𝜑)}
3 df-rab 2921 . . . 4 {𝑥𝐵𝜑} = {𝑥 ∣ (𝑥𝐵𝜑)}
42, 3uneq12i 3765 . . 3 ({𝑥𝐴𝜑} ∪ {𝑥𝐵𝜑}) = ({𝑥 ∣ (𝑥𝐴𝜑)} ∪ {𝑥 ∣ (𝑥𝐵𝜑)})
5 elun 3753 . . . . . . 7 (𝑥 ∈ (𝐴𝐵) ↔ (𝑥𝐴𝑥𝐵))
65anbi1i 731 . . . . . 6 ((𝑥 ∈ (𝐴𝐵) ∧ 𝜑) ↔ ((𝑥𝐴𝑥𝐵) ∧ 𝜑))
7 andir 912 . . . . . 6 (((𝑥𝐴𝑥𝐵) ∧ 𝜑) ↔ ((𝑥𝐴𝜑) ∨ (𝑥𝐵𝜑)))
86, 7bitri 264 . . . . 5 ((𝑥 ∈ (𝐴𝐵) ∧ 𝜑) ↔ ((𝑥𝐴𝜑) ∨ (𝑥𝐵𝜑)))
98abbii 2739 . . . 4 {𝑥 ∣ (𝑥 ∈ (𝐴𝐵) ∧ 𝜑)} = {𝑥 ∣ ((𝑥𝐴𝜑) ∨ (𝑥𝐵𝜑))}
10 unab 3894 . . . 4 ({𝑥 ∣ (𝑥𝐴𝜑)} ∪ {𝑥 ∣ (𝑥𝐵𝜑)}) = {𝑥 ∣ ((𝑥𝐴𝜑) ∨ (𝑥𝐵𝜑))}
119, 10eqtr4i 2647 . . 3 {𝑥 ∣ (𝑥 ∈ (𝐴𝐵) ∧ 𝜑)} = ({𝑥 ∣ (𝑥𝐴𝜑)} ∪ {𝑥 ∣ (𝑥𝐵𝜑)})
124, 11eqtr4i 2647 . 2 ({𝑥𝐴𝜑} ∪ {𝑥𝐵𝜑}) = {𝑥 ∣ (𝑥 ∈ (𝐴𝐵) ∧ 𝜑)}
131, 12eqtr4i 2647 1 {𝑥 ∈ (𝐴𝐵) ∣ 𝜑} = ({𝑥𝐴𝜑} ∪ {𝑥𝐵𝜑})
Colors of variables: wff setvar class
Syntax hints:  wo 383  wa 384   = wceq 1483  wcel 1990  {cab 2608  {crab 2916  cun 3572
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-rab 2921  df-v 3202  df-un 3579
This theorem is referenced by:  fnsuppres  7322  lfinun  21328  vtxdginducedm1  26439
  Copyright terms: Public domain W3C validator