| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > ralcom4f | Structured version Visualization version GIF version | ||
| Description: Commutation of restricted and unrestricted universal quantifiers. (Contributed by NM, 26-Mar-2004.) (Proof shortened by Andrew Salmon, 8-Jun-2011.) (Revised by Thierry Arnoux, 8-Mar-2017.) |
| Ref | Expression |
|---|---|
| ralcom4f.1 | ⊢ Ⅎ𝑦𝐴 |
| Ref | Expression |
|---|---|
| ralcom4f | ⊢ (∀𝑥 ∈ 𝐴 ∀𝑦𝜑 ↔ ∀𝑦∀𝑥 ∈ 𝐴 𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ralcom4f.1 | . . 3 ⊢ Ⅎ𝑦𝐴 | |
| 2 | nfcv 2764 | . . 3 ⊢ Ⅎ𝑥V | |
| 3 | 1, 2 | ralcomf 3096 | . 2 ⊢ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ V 𝜑 ↔ ∀𝑦 ∈ V ∀𝑥 ∈ 𝐴 𝜑) |
| 4 | ralv 3219 | . . 3 ⊢ (∀𝑦 ∈ V 𝜑 ↔ ∀𝑦𝜑) | |
| 5 | 4 | ralbii 2980 | . 2 ⊢ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ V 𝜑 ↔ ∀𝑥 ∈ 𝐴 ∀𝑦𝜑) |
| 6 | ralv 3219 | . 2 ⊢ (∀𝑦 ∈ V ∀𝑥 ∈ 𝐴 𝜑 ↔ ∀𝑦∀𝑥 ∈ 𝐴 𝜑) | |
| 7 | 3, 5, 6 | 3bitr3i 290 | 1 ⊢ (∀𝑥 ∈ 𝐴 ∀𝑦𝜑 ↔ ∀𝑦∀𝑥 ∈ 𝐴 𝜑) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 196 ∀wal 1481 Ⅎwnfc 2751 ∀wral 2912 Vcvv 3200 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ral 2917 df-v 3202 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |