| Mathbox for Scott Fenton |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > relsset | Structured version Visualization version GIF version | ||
| Description: The subset class is a binary relation. (Contributed by Scott Fenton, 31-Mar-2012.) |
| Ref | Expression |
|---|---|
| relsset | ⊢ Rel SSet |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-sset 31963 | . . 3 ⊢ SSet = ((V × V) ∖ ran ( E ⊗ (V ∖ E ))) | |
| 2 | difss 3737 | . . 3 ⊢ ((V × V) ∖ ran ( E ⊗ (V ∖ E ))) ⊆ (V × V) | |
| 3 | 1, 2 | eqsstri 3635 | . 2 ⊢ SSet ⊆ (V × V) |
| 4 | df-rel 5121 | . 2 ⊢ (Rel SSet ↔ SSet ⊆ (V × V)) | |
| 5 | 3, 4 | mpbir 221 | 1 ⊢ Rel SSet |
| Colors of variables: wff setvar class |
| Syntax hints: Vcvv 3200 ∖ cdif 3571 ⊆ wss 3574 E cep 5028 × cxp 5112 ran crn 5115 Rel wrel 5119 ⊗ ctxp 31937 SSet csset 31939 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-v 3202 df-dif 3577 df-in 3581 df-ss 3588 df-rel 5121 df-sset 31963 |
| This theorem is referenced by: brsset 31996 idsset 31997 |
| Copyright terms: Public domain | W3C validator |