![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > resiun1OLD | Structured version Visualization version GIF version |
Description: Obsolete proof of resiun1 5416 as of 25-Aug-2021. (Contributed by Mario Carneiro, 29-May-2015.) (New usage is discouraged.) (Proof modification is discouraged.) |
Ref | Expression |
---|---|
resiun1OLD | ⊢ (∪ 𝑥 ∈ 𝐴 𝐵 ↾ 𝐶) = ∪ 𝑥 ∈ 𝐴 (𝐵 ↾ 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | iunin2 4584 | . 2 ⊢ ∪ 𝑥 ∈ 𝐴 ((𝐶 × V) ∩ 𝐵) = ((𝐶 × V) ∩ ∪ 𝑥 ∈ 𝐴 𝐵) | |
2 | df-res 5126 | . . . . 5 ⊢ (𝐵 ↾ 𝐶) = (𝐵 ∩ (𝐶 × V)) | |
3 | incom 3805 | . . . . 5 ⊢ (𝐵 ∩ (𝐶 × V)) = ((𝐶 × V) ∩ 𝐵) | |
4 | 2, 3 | eqtri 2644 | . . . 4 ⊢ (𝐵 ↾ 𝐶) = ((𝐶 × V) ∩ 𝐵) |
5 | 4 | a1i 11 | . . 3 ⊢ (𝑥 ∈ 𝐴 → (𝐵 ↾ 𝐶) = ((𝐶 × V) ∩ 𝐵)) |
6 | 5 | iuneq2i 4539 | . 2 ⊢ ∪ 𝑥 ∈ 𝐴 (𝐵 ↾ 𝐶) = ∪ 𝑥 ∈ 𝐴 ((𝐶 × V) ∩ 𝐵) |
7 | df-res 5126 | . . 3 ⊢ (∪ 𝑥 ∈ 𝐴 𝐵 ↾ 𝐶) = (∪ 𝑥 ∈ 𝐴 𝐵 ∩ (𝐶 × V)) | |
8 | incom 3805 | . . 3 ⊢ (∪ 𝑥 ∈ 𝐴 𝐵 ∩ (𝐶 × V)) = ((𝐶 × V) ∩ ∪ 𝑥 ∈ 𝐴 𝐵) | |
9 | 7, 8 | eqtri 2644 | . 2 ⊢ (∪ 𝑥 ∈ 𝐴 𝐵 ↾ 𝐶) = ((𝐶 × V) ∩ ∪ 𝑥 ∈ 𝐴 𝐵) |
10 | 1, 6, 9 | 3eqtr4ri 2655 | 1 ⊢ (∪ 𝑥 ∈ 𝐴 𝐵 ↾ 𝐶) = ∪ 𝑥 ∈ 𝐴 (𝐵 ↾ 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1483 ∈ wcel 1990 Vcvv 3200 ∩ cin 3573 ∪ ciun 4520 × cxp 5112 ↾ cres 5116 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ral 2917 df-rex 2918 df-v 3202 df-in 3581 df-ss 3588 df-iun 4522 df-res 5126 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |