Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  reuimrmo Structured version   Visualization version   GIF version

Theorem reuimrmo 41178
Description: Restricted uniqueness implies restricted "at most one" through implication, analogous to euimmo 2522. (Contributed by Alexander van der Vekens, 25-Jun-2017.)
Assertion
Ref Expression
reuimrmo (∀𝑥𝐴 (𝜑𝜓) → (∃!𝑥𝐴 𝜓 → ∃*𝑥𝐴 𝜑))

Proof of Theorem reuimrmo
StepHypRef Expression
1 reurmo 3161 . 2 (∃!𝑥𝐴 𝜓 → ∃*𝑥𝐴 𝜓)
2 rmoim 3407 . 2 (∀𝑥𝐴 (𝜑𝜓) → (∃*𝑥𝐴 𝜓 → ∃*𝑥𝐴 𝜑))
31, 2syl5 34 1 (∀𝑥𝐴 (𝜑𝜓) → (∃!𝑥𝐴 𝜓 → ∃*𝑥𝐴 𝜑))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wral 2912  ∃!wreu 2914  ∃*wrmo 2915
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-10 2019  ax-12 2047
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-ex 1705  df-nf 1710  df-eu 2474  df-mo 2475  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920
This theorem is referenced by:  2reurmo  41182
  Copyright terms: Public domain W3C validator