Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rexlimdva2 Structured version   Visualization version   GIF version

Theorem rexlimdva2 39339
Description: Inference from Theorem 19.23 of [Margaris] p. 90 (restricted quantifier version). (Contributed by Glauco Siliprandi, 2-Jan-2022.)
Hypothesis
Ref Expression
rexlimdva2.1 (((𝜑𝑥𝐴) ∧ 𝜓) → 𝜒)
Assertion
Ref Expression
rexlimdva2 (𝜑 → (∃𝑥𝐴 𝜓𝜒))
Distinct variable groups:   𝜒,𝑥   𝜑,𝑥
Allowed substitution hints:   𝜓(𝑥)   𝐴(𝑥)

Proof of Theorem rexlimdva2
StepHypRef Expression
1 rexlimdva2.1 . . 3 (((𝜑𝑥𝐴) ∧ 𝜓) → 𝜒)
21exp31 630 . 2 (𝜑 → (𝑥𝐴 → (𝜓𝜒)))
32rexlimdv 3030 1 (𝜑 → (∃𝑥𝐴 𝜓𝜒))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384  wcel 1990  wrex 2913
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839
This theorem depends on definitions:  df-bi 197  df-an 386  df-ex 1705  df-ral 2917  df-rex 2918
This theorem is referenced by:  supminfxr  39694  infrpgernmpt  39695  limsupresxr  39998  liminfresxr  39999  liminflelimsuplem  40007  limsupgtlem  40009  liminfvalxr  40015  liminfreuzlem  40034  cnrefiisplem  40055  xlimmnfvlem2  40059  xlimpnfvlem2  40063  smfliminflem  41036
  Copyright terms: Public domain W3C validator