| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > riotav | Structured version Visualization version GIF version | ||
| Description: An iota restricted to the universe is unrestricted. (Contributed by NM, 18-Sep-2011.) |
| Ref | Expression |
|---|---|
| riotav | ⊢ (℩𝑥 ∈ V 𝜑) = (℩𝑥𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-riota 6611 | . 2 ⊢ (℩𝑥 ∈ V 𝜑) = (℩𝑥(𝑥 ∈ V ∧ 𝜑)) | |
| 2 | vex 3203 | . . . 4 ⊢ 𝑥 ∈ V | |
| 3 | 2 | biantrur 527 | . . 3 ⊢ (𝜑 ↔ (𝑥 ∈ V ∧ 𝜑)) |
| 4 | 3 | iotabii 5873 | . 2 ⊢ (℩𝑥𝜑) = (℩𝑥(𝑥 ∈ V ∧ 𝜑)) |
| 5 | 1, 4 | eqtr4i 2647 | 1 ⊢ (℩𝑥 ∈ V 𝜑) = (℩𝑥𝜑) |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 384 = wceq 1483 ∈ wcel 1990 Vcvv 3200 ℩cio 5849 ℩crio 6610 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-rex 2918 df-v 3202 df-uni 4437 df-iota 5851 df-riota 6611 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |