MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  riotav Structured version   Visualization version   GIF version

Theorem riotav 6616
Description: An iota restricted to the universe is unrestricted. (Contributed by NM, 18-Sep-2011.)
Assertion
Ref Expression
riotav (𝑥 ∈ V 𝜑) = (℩𝑥𝜑)

Proof of Theorem riotav
StepHypRef Expression
1 df-riota 6611 . 2 (𝑥 ∈ V 𝜑) = (℩𝑥(𝑥 ∈ V ∧ 𝜑))
2 vex 3203 . . . 4 𝑥 ∈ V
32biantrur 527 . . 3 (𝜑 ↔ (𝑥 ∈ V ∧ 𝜑))
43iotabii 5873 . 2 (℩𝑥𝜑) = (℩𝑥(𝑥 ∈ V ∧ 𝜑))
51, 4eqtr4i 2647 1 (𝑥 ∈ V 𝜑) = (℩𝑥𝜑)
Colors of variables: wff setvar class
Syntax hints:  wa 384   = wceq 1483  wcel 1990  Vcvv 3200  cio 5849  crio 6610
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-rex 2918  df-v 3202  df-uni 4437  df-iota 5851  df-riota 6611
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator