MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rmobii Structured version   Visualization version   GIF version

Theorem rmobii 3133
Description: Formula-building rule for restricted existential quantifier (inference rule). (Contributed by NM, 16-Jun-2017.)
Hypothesis
Ref Expression
rmobii.1 (𝜑𝜓)
Assertion
Ref Expression
rmobii (∃*𝑥𝐴 𝜑 ↔ ∃*𝑥𝐴 𝜓)

Proof of Theorem rmobii
StepHypRef Expression
1 rmobii.1 . . 3 (𝜑𝜓)
21a1i 11 . 2 (𝑥𝐴 → (𝜑𝜓))
32rmobiia 3132 1 (∃*𝑥𝐴 𝜑 ↔ ∃*𝑥𝐴 𝜓)
Colors of variables: wff setvar class
Syntax hints:  wb 196  wcel 1990  ∃*wrmo 2915
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-12 2047
This theorem depends on definitions:  df-bi 197  df-an 386  df-tru 1486  df-ex 1705  df-nf 1710  df-eu 2474  df-mo 2475  df-rmo 2920
This theorem is referenced by:  reuxfr2d  4891  brdom7disj  9353  reuxfr3d  29329  cvmlift2lem13  31297  nomaxmo  31847  ineccnvmo  34122  2reu5a  41177
  Copyright terms: Public domain W3C validator