| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rmoi2 | Structured version Visualization version GIF version | ||
| Description: Consequence of "restricted at most one." (Contributed by Thierry Arnoux, 9-Dec-2019.) |
| Ref | Expression |
|---|---|
| rmoi2.1 | ⊢ (𝑥 = 𝐵 → (𝜓 ↔ 𝜒)) |
| rmoi2.2 | ⊢ (𝜑 → 𝐵 ∈ 𝐴) |
| rmoi2.3 | ⊢ (𝜑 → ∃*𝑥 ∈ 𝐴 𝜓) |
| rmoi2.4 | ⊢ (𝜑 → 𝑥 ∈ 𝐴) |
| rmoi2.5 | ⊢ (𝜑 → 𝜓) |
| rmoi2.6 | ⊢ (𝜑 → 𝜒) |
| Ref | Expression |
|---|---|
| rmoi2 | ⊢ (𝜑 → 𝑥 = 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rmoi2.6 | . 2 ⊢ (𝜑 → 𝜒) | |
| 2 | rmoi2.1 | . . 3 ⊢ (𝑥 = 𝐵 → (𝜓 ↔ 𝜒)) | |
| 3 | rmoi2.2 | . . 3 ⊢ (𝜑 → 𝐵 ∈ 𝐴) | |
| 4 | rmoi2.3 | . . 3 ⊢ (𝜑 → ∃*𝑥 ∈ 𝐴 𝜓) | |
| 5 | rmoi2.4 | . . 3 ⊢ (𝜑 → 𝑥 ∈ 𝐴) | |
| 6 | rmoi2.5 | . . 3 ⊢ (𝜑 → 𝜓) | |
| 7 | 2, 3, 4, 5, 6 | rmob2 3531 | . 2 ⊢ (𝜑 → (𝑥 = 𝐵 ↔ 𝜒)) |
| 8 | 1, 7 | mpbird 247 | 1 ⊢ (𝜑 → 𝑥 = 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 196 = wceq 1483 ∈ wcel 1990 ∃*wrmo 2915 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-rmo 2920 df-v 3202 |
| This theorem is referenced by: lmieu 25676 |
| Copyright terms: Public domain | W3C validator |