| Mathbox for Emmett Weisz |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > rspcdf | Structured version Visualization version GIF version | ||
| Description: Restricted specialization, using implicit substitution. (Contributed by Emmett Weisz, 16-Jan-2020.) |
| Ref | Expression |
|---|---|
| rspcdf.1 | ⊢ Ⅎ𝑥𝜑 |
| rspcdf.2 | ⊢ Ⅎ𝑥𝜒 |
| rspcdf.3 | ⊢ (𝜑 → 𝐴 ∈ 𝐵) |
| rspcdf.4 | ⊢ ((𝜑 ∧ 𝑥 = 𝐴) → (𝜓 ↔ 𝜒)) |
| Ref | Expression |
|---|---|
| rspcdf | ⊢ (𝜑 → (∀𝑥 ∈ 𝐵 𝜓 → 𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rspcdf.1 | . . 3 ⊢ Ⅎ𝑥𝜑 | |
| 2 | rspcdf.4 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 = 𝐴) → (𝜓 ↔ 𝜒)) | |
| 3 | 2 | ex 450 | . . 3 ⊢ (𝜑 → (𝑥 = 𝐴 → (𝜓 ↔ 𝜒))) |
| 4 | 1, 3 | alrimi 2082 | . 2 ⊢ (𝜑 → ∀𝑥(𝑥 = 𝐴 → (𝜓 ↔ 𝜒))) |
| 5 | rspcdf.3 | . 2 ⊢ (𝜑 → 𝐴 ∈ 𝐵) | |
| 6 | rspcdf.2 | . . 3 ⊢ Ⅎ𝑥𝜒 | |
| 7 | 6 | rspct 3302 | . 2 ⊢ (∀𝑥(𝑥 = 𝐴 → (𝜓 ↔ 𝜒)) → (𝐴 ∈ 𝐵 → (∀𝑥 ∈ 𝐵 𝜓 → 𝜒))) |
| 8 | 4, 5, 7 | sylc 65 | 1 ⊢ (𝜑 → (∀𝑥 ∈ 𝐵 𝜓 → 𝜒)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 196 ∧ wa 384 ∀wal 1481 = wceq 1483 Ⅎwnf 1708 ∈ wcel 1990 ∀wral 2912 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ral 2917 df-v 3202 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |