| Mathbox for Giovanni Mascellani |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > sbali | Structured version Visualization version GIF version | ||
| Description: Discard class substitution in a universal quantification when substituting the quantified variable, in inference form. (Contributed by Giovanni Mascellani, 27-May-2019.) |
| Ref | Expression |
|---|---|
| sbali.1 | ⊢ 𝐴 ∈ V |
| Ref | Expression |
|---|---|
| sbali | ⊢ ([𝐴 / 𝑥]∀𝑥𝜑 ↔ ∀𝑥𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sbali.1 | . 2 ⊢ 𝐴 ∈ V | |
| 2 | nfa1 2028 | . . 3 ⊢ Ⅎ𝑥∀𝑥𝜑 | |
| 3 | 2 | sbcgf 3501 | . 2 ⊢ (𝐴 ∈ V → ([𝐴 / 𝑥]∀𝑥𝜑 ↔ ∀𝑥𝜑)) |
| 4 | 1, 3 | ax-mp 5 | 1 ⊢ ([𝐴 / 𝑥]∀𝑥𝜑 ↔ ∀𝑥𝜑) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 196 ∀wal 1481 ∈ wcel 1990 Vcvv 3200 [wsbc 3435 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-12 2047 ax-13 2246 ax-ext 2602 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-clab 2609 df-cleq 2615 df-clel 2618 df-v 3202 df-sbc 3436 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |