![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > sbc8g | Structured version Visualization version GIF version |
Description: This is the closest we can get to df-sbc 3436 if we start from dfsbcq 3437 (see its comments) and dfsbcq2 3438. (Contributed by NM, 18-Nov-2008.) (Proof shortened by Andrew Salmon, 29-Jun-2011.) (Proof modification is discouraged.) |
Ref | Expression |
---|---|
sbc8g | ⊢ (𝐴 ∈ 𝑉 → ([𝐴 / 𝑥]𝜑 ↔ 𝐴 ∈ {𝑥 ∣ 𝜑})) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfsbcq 3437 | . 2 ⊢ (𝑦 = 𝐴 → ([𝑦 / 𝑥]𝜑 ↔ [𝐴 / 𝑥]𝜑)) | |
2 | eleq1 2689 | . 2 ⊢ (𝑦 = 𝐴 → (𝑦 ∈ {𝑥 ∣ 𝜑} ↔ 𝐴 ∈ {𝑥 ∣ 𝜑})) | |
3 | df-clab 2609 | . . 3 ⊢ (𝑦 ∈ {𝑥 ∣ 𝜑} ↔ [𝑦 / 𝑥]𝜑) | |
4 | equid 1939 | . . . 4 ⊢ 𝑦 = 𝑦 | |
5 | dfsbcq2 3438 | . . . 4 ⊢ (𝑦 = 𝑦 → ([𝑦 / 𝑥]𝜑 ↔ [𝑦 / 𝑥]𝜑)) | |
6 | 4, 5 | ax-mp 5 | . . 3 ⊢ ([𝑦 / 𝑥]𝜑 ↔ [𝑦 / 𝑥]𝜑) |
7 | 3, 6 | bitr2i 265 | . 2 ⊢ ([𝑦 / 𝑥]𝜑 ↔ 𝑦 ∈ {𝑥 ∣ 𝜑}) |
8 | 1, 2, 7 | vtoclbg 3267 | 1 ⊢ (𝐴 ∈ 𝑉 → ([𝐴 / 𝑥]𝜑 ↔ 𝐴 ∈ {𝑥 ∣ 𝜑})) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 [wsb 1880 ∈ wcel 1990 {cab 2608 [wsbc 3435 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-12 2047 ax-ext 2602 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-clab 2609 df-cleq 2615 df-clel 2618 df-v 3202 df-sbc 3436 |
This theorem is referenced by: bnj984 31022 rusbcALT 38640 |
Copyright terms: Public domain | W3C validator |