MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sbc8g Structured version   Visualization version   GIF version

Theorem sbc8g 3443
Description: This is the closest we can get to df-sbc 3436 if we start from dfsbcq 3437 (see its comments) and dfsbcq2 3438. (Contributed by NM, 18-Nov-2008.) (Proof shortened by Andrew Salmon, 29-Jun-2011.) (Proof modification is discouraged.)
Assertion
Ref Expression
sbc8g (𝐴𝑉 → ([𝐴 / 𝑥]𝜑𝐴 ∈ {𝑥𝜑}))

Proof of Theorem sbc8g
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 dfsbcq 3437 . 2 (𝑦 = 𝐴 → ([𝑦 / 𝑥]𝜑[𝐴 / 𝑥]𝜑))
2 eleq1 2689 . 2 (𝑦 = 𝐴 → (𝑦 ∈ {𝑥𝜑} ↔ 𝐴 ∈ {𝑥𝜑}))
3 df-clab 2609 . . 3 (𝑦 ∈ {𝑥𝜑} ↔ [𝑦 / 𝑥]𝜑)
4 equid 1939 . . . 4 𝑦 = 𝑦
5 dfsbcq2 3438 . . . 4 (𝑦 = 𝑦 → ([𝑦 / 𝑥]𝜑[𝑦 / 𝑥]𝜑))
64, 5ax-mp 5 . . 3 ([𝑦 / 𝑥]𝜑[𝑦 / 𝑥]𝜑)
73, 6bitr2i 265 . 2 ([𝑦 / 𝑥]𝜑𝑦 ∈ {𝑥𝜑})
81, 2, 7vtoclbg 3267 1 (𝐴𝑉 → ([𝐴 / 𝑥]𝜑𝐴 ∈ {𝑥𝜑}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  [wsb 1880  wcel 1990  {cab 2608  [wsbc 3435
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-12 2047  ax-ext 2602
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-v 3202  df-sbc 3436
This theorem is referenced by:  bnj984  31022  rusbcALT  38640
  Copyright terms: Public domain W3C validator