![]() |
Mathbox for Alan Sare |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > sbcbiiOLD | Structured version Visualization version GIF version |
Description: Formula-building inference rule for class substitution. (Contributed by NM, 11-Nov-2005.) Obsolete as of 17-Aug-2018. Use sbcbii 3491 instead. (New usage is discouraged.) (Proof modification is discouraged.) |
Ref | Expression |
---|---|
sbcbiiOLD.1 | ⊢ (𝜑 ↔ 𝜓) |
Ref | Expression |
---|---|
sbcbiiOLD | ⊢ (𝐴 ∈ 𝑉 → ([𝐴 / 𝑥]𝜑 ↔ [𝐴 / 𝑥]𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sbcbiiOLD.1 | . . 3 ⊢ (𝜑 ↔ 𝜓) | |
2 | 1 | sbcbii 3491 | . 2 ⊢ ([𝐴 / 𝑥]𝜑 ↔ [𝐴 / 𝑥]𝜓) |
3 | 2 | a1i 11 | 1 ⊢ (𝐴 ∈ 𝑉 → ([𝐴 / 𝑥]𝜑 ↔ [𝐴 / 𝑥]𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∈ wcel 1990 [wsbc 3435 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-clab 2609 df-cleq 2615 df-clel 2618 df-sbc 3436 |
This theorem is referenced by: sbc3orgOLD 38742 sbcssOLD 38756 eqsbc3rVD 39075 |
Copyright terms: Public domain | W3C validator |