MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sbcimdv Structured version   Visualization version   GIF version

Theorem sbcimdv 3498
Description: Substitution analogue of Theorem 19.20 of [Margaris] p. 90 (alim 1738). (Contributed by NM, 11-Nov-2005.) (Revised by NM, 17-Aug-2018.) (Proof shortened by JJ, 7-Jul-2021.)
Hypothesis
Ref Expression
sbcimdv.1 (𝜑 → (𝜓𝜒))
Assertion
Ref Expression
sbcimdv (𝜑 → ([𝐴 / 𝑥]𝜓[𝐴 / 𝑥]𝜒))
Distinct variable group:   𝜑,𝑥
Allowed substitution hints:   𝜓(𝑥)   𝜒(𝑥)   𝐴(𝑥)

Proof of Theorem sbcimdv
StepHypRef Expression
1 sbcex 3445 . 2 ([𝐴 / 𝑥]𝜓𝐴 ∈ V)
2 sbcimdv.1 . . . . 5 (𝜑 → (𝜓𝜒))
32alrimiv 1855 . . . 4 (𝜑 → ∀𝑥(𝜓𝜒))
4 spsbc 3448 . . . 4 (𝐴 ∈ V → (∀𝑥(𝜓𝜒) → [𝐴 / 𝑥](𝜓𝜒)))
5 sbcim1 3482 . . . 4 ([𝐴 / 𝑥](𝜓𝜒) → ([𝐴 / 𝑥]𝜓[𝐴 / 𝑥]𝜒))
63, 4, 5syl56 36 . . 3 (𝐴 ∈ V → (𝜑 → ([𝐴 / 𝑥]𝜓[𝐴 / 𝑥]𝜒)))
76com3l 89 . 2 (𝜑 → ([𝐴 / 𝑥]𝜓 → (𝐴 ∈ V → [𝐴 / 𝑥]𝜒)))
81, 7mpdi 45 1 (𝜑 → ([𝐴 / 𝑥]𝜓[𝐴 / 𝑥]𝜒))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wal 1481  wcel 1990  Vcvv 3200  [wsbc 3435
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-12 2047  ax-13 2246  ax-ext 2602
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-v 3202  df-sbc 3436
This theorem is referenced by:  esum2dlem  30154
  Copyright terms: Public domain W3C validator