| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sbcthdv | Structured version Visualization version GIF version | ||
| Description: Deduction version of sbcth 3450. (Contributed by NM, 30-Nov-2005.) (Proof shortened by Andrew Salmon, 8-Jun-2011.) |
| Ref | Expression |
|---|---|
| sbcthdv.1 | ⊢ (𝜑 → 𝜓) |
| Ref | Expression |
|---|---|
| sbcthdv | ⊢ ((𝜑 ∧ 𝐴 ∈ 𝑉) → [𝐴 / 𝑥]𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sbcthdv.1 | . . 3 ⊢ (𝜑 → 𝜓) | |
| 2 | 1 | alrimiv 1855 | . 2 ⊢ (𝜑 → ∀𝑥𝜓) |
| 3 | spsbc 3448 | . 2 ⊢ (𝐴 ∈ 𝑉 → (∀𝑥𝜓 → [𝐴 / 𝑥]𝜓)) | |
| 4 | 2, 3 | mpan9 486 | 1 ⊢ ((𝜑 ∧ 𝐴 ∈ 𝑉) → [𝐴 / 𝑥]𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 384 ∀wal 1481 ∈ wcel 1990 [wsbc 3435 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-12 2047 ax-13 2246 ax-ext 2602 |
| This theorem depends on definitions: df-bi 197 df-an 386 df-tru 1486 df-ex 1705 df-sb 1881 df-clab 2609 df-cleq 2615 df-clel 2618 df-v 3202 df-sbc 3436 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |