MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sbcid Structured version   Visualization version   GIF version

Theorem sbcid 3452
Description: An identity theorem for substitution. See sbid 2114. (Contributed by Mario Carneiro, 18-Feb-2017.)
Assertion
Ref Expression
sbcid ([𝑥 / 𝑥]𝜑𝜑)

Proof of Theorem sbcid
StepHypRef Expression
1 sbsbc 3439 . 2 ([𝑥 / 𝑥]𝜑[𝑥 / 𝑥]𝜑)
2 sbid 2114 . 2 ([𝑥 / 𝑥]𝜑𝜑)
31, 2bitr3i 266 1 ([𝑥 / 𝑥]𝜑𝜑)
Colors of variables: wff setvar class
Syntax hints:  wb 196  [wsb 1880  [wsbc 3435
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-12 2047  ax-ext 2602
This theorem depends on definitions:  df-bi 197  df-an 386  df-ex 1705  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-sbc 3436
This theorem is referenced by:  csbid  3541  snfil  21668  ex-natded9.26  27276  bnj605  30977  dedths  34248  frege93  38250
  Copyright terms: Public domain W3C validator