| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sbelx | Structured version Visualization version GIF version | ||
| Description: Elimination of substitution. (Contributed by NM, 5-Aug-1993.) |
| Ref | Expression |
|---|---|
| sbelx | ⊢ (𝜑 ↔ ∃𝑥(𝑥 = 𝑦 ∧ [𝑥 / 𝑦]𝜑)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sbid2v 2457 | . 2 ⊢ ([𝑦 / 𝑥][𝑥 / 𝑦]𝜑 ↔ 𝜑) | |
| 2 | sb5 2430 | . 2 ⊢ ([𝑦 / 𝑥][𝑥 / 𝑦]𝜑 ↔ ∃𝑥(𝑥 = 𝑦 ∧ [𝑥 / 𝑦]𝜑)) | |
| 3 | 1, 2 | bitr3i 266 | 1 ⊢ (𝜑 ↔ ∃𝑥(𝑥 = 𝑦 ∧ [𝑥 / 𝑦]𝜑)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 196 ∧ wa 384 ∃wex 1704 [wsb 1880 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-10 2019 ax-12 2047 ax-13 2246 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-ex 1705 df-nf 1710 df-sb 1881 |
| This theorem is referenced by: pm13.196a 38615 |
| Copyright terms: Public domain | W3C validator |