Users' Mathboxes Mathbox for Giovanni Mascellani < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sbeqi Structured version   Visualization version   GIF version

Theorem sbeqi 33968
Description: Equality deduction for substitution. (Contributed by Giovanni Mascellani, 10-Apr-2018.)
Assertion
Ref Expression
sbeqi ((𝑥 = 𝑦 ∧ ∀𝑧(𝜑𝜓)) → ([𝑥 / 𝑧]𝜑 ↔ [𝑦 / 𝑧]𝜓))

Proof of Theorem sbeqi
StepHypRef Expression
1 spsbbi 2402 . 2 (∀𝑧(𝜑𝜓) → ([𝑥 / 𝑧]𝜑 ↔ [𝑥 / 𝑧]𝜓))
2 sbequ 2376 . 2 (𝑥 = 𝑦 → ([𝑥 / 𝑧]𝜓 ↔ [𝑦 / 𝑧]𝜓))
31, 2sylan9bbr 737 1 ((𝑥 = 𝑦 ∧ ∀𝑧(𝜑𝜓)) → ([𝑥 / 𝑧]𝜑 ↔ [𝑦 / 𝑧]𝜓))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384  wal 1481   = wceq 1483  [wsb 1880
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-10 2019  ax-12 2047  ax-13 2246
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-ex 1705  df-nf 1710  df-sb 1881
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator