| Mathbox for Giovanni Mascellani |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > sbeqi | Structured version Visualization version GIF version | ||
| Description: Equality deduction for substitution. (Contributed by Giovanni Mascellani, 10-Apr-2018.) |
| Ref | Expression |
|---|---|
| sbeqi | ⊢ ((𝑥 = 𝑦 ∧ ∀𝑧(𝜑 ↔ 𝜓)) → ([𝑥 / 𝑧]𝜑 ↔ [𝑦 / 𝑧]𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | spsbbi 2402 | . 2 ⊢ (∀𝑧(𝜑 ↔ 𝜓) → ([𝑥 / 𝑧]𝜑 ↔ [𝑥 / 𝑧]𝜓)) | |
| 2 | sbequ 2376 | . 2 ⊢ (𝑥 = 𝑦 → ([𝑥 / 𝑧]𝜓 ↔ [𝑦 / 𝑧]𝜓)) | |
| 3 | 1, 2 | sylan9bbr 737 | 1 ⊢ ((𝑥 = 𝑦 ∧ ∀𝑧(𝜑 ↔ 𝜓)) → ([𝑥 / 𝑧]𝜑 ↔ [𝑦 / 𝑧]𝜓)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 196 ∧ wa 384 ∀wal 1481 = wceq 1483 [wsb 1880 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-10 2019 ax-12 2047 ax-13 2246 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-ex 1705 df-nf 1710 df-sb 1881 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |