| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sbralie | Structured version Visualization version GIF version | ||
| Description: Implicit to explicit substitution that swaps variables in a quantified expression. (Contributed by NM, 5-Sep-2004.) |
| Ref | Expression |
|---|---|
| sbralie.1 | ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) |
| Ref | Expression |
|---|---|
| sbralie | ⊢ ([𝑥 / 𝑦]∀𝑥 ∈ 𝑦 𝜑 ↔ ∀𝑦 ∈ 𝑥 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cbvralsv 3182 | . . . 4 ⊢ (∀𝑥 ∈ 𝑦 𝜑 ↔ ∀𝑧 ∈ 𝑦 [𝑧 / 𝑥]𝜑) | |
| 2 | 1 | sbbii 1887 | . . 3 ⊢ ([𝑥 / 𝑦]∀𝑥 ∈ 𝑦 𝜑 ↔ [𝑥 / 𝑦]∀𝑧 ∈ 𝑦 [𝑧 / 𝑥]𝜑) |
| 3 | nfv 1843 | . . . 4 ⊢ Ⅎ𝑦∀𝑧 ∈ 𝑥 [𝑧 / 𝑥]𝜑 | |
| 4 | raleq 3138 | . . . 4 ⊢ (𝑦 = 𝑥 → (∀𝑧 ∈ 𝑦 [𝑧 / 𝑥]𝜑 ↔ ∀𝑧 ∈ 𝑥 [𝑧 / 𝑥]𝜑)) | |
| 5 | 3, 4 | sbie 2408 | . . 3 ⊢ ([𝑥 / 𝑦]∀𝑧 ∈ 𝑦 [𝑧 / 𝑥]𝜑 ↔ ∀𝑧 ∈ 𝑥 [𝑧 / 𝑥]𝜑) |
| 6 | 2, 5 | bitri 264 | . 2 ⊢ ([𝑥 / 𝑦]∀𝑥 ∈ 𝑦 𝜑 ↔ ∀𝑧 ∈ 𝑥 [𝑧 / 𝑥]𝜑) |
| 7 | cbvralsv 3182 | . . 3 ⊢ (∀𝑧 ∈ 𝑥 [𝑧 / 𝑥]𝜑 ↔ ∀𝑦 ∈ 𝑥 [𝑦 / 𝑧][𝑧 / 𝑥]𝜑) | |
| 8 | nfv 1843 | . . . . . 6 ⊢ Ⅎ𝑧𝜑 | |
| 9 | 8 | sbco2 2415 | . . . . 5 ⊢ ([𝑦 / 𝑧][𝑧 / 𝑥]𝜑 ↔ [𝑦 / 𝑥]𝜑) |
| 10 | nfv 1843 | . . . . . 6 ⊢ Ⅎ𝑥𝜓 | |
| 11 | sbralie.1 | . . . . . 6 ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) | |
| 12 | 10, 11 | sbie 2408 | . . . . 5 ⊢ ([𝑦 / 𝑥]𝜑 ↔ 𝜓) |
| 13 | 9, 12 | bitri 264 | . . . 4 ⊢ ([𝑦 / 𝑧][𝑧 / 𝑥]𝜑 ↔ 𝜓) |
| 14 | 13 | ralbii 2980 | . . 3 ⊢ (∀𝑦 ∈ 𝑥 [𝑦 / 𝑧][𝑧 / 𝑥]𝜑 ↔ ∀𝑦 ∈ 𝑥 𝜓) |
| 15 | 7, 14 | bitri 264 | . 2 ⊢ (∀𝑧 ∈ 𝑥 [𝑧 / 𝑥]𝜑 ↔ ∀𝑦 ∈ 𝑥 𝜓) |
| 16 | 6, 15 | bitri 264 | 1 ⊢ ([𝑥 / 𝑦]∀𝑥 ∈ 𝑦 𝜑 ↔ ∀𝑦 ∈ 𝑥 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 196 [wsb 1880 ∀wral 2912 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ral 2917 |
| This theorem is referenced by: tfinds2 7063 |
| Copyright terms: Public domain | W3C validator |