| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sneqrg | Structured version Visualization version GIF version | ||
| Description: Closed form of sneqr 4371. (Contributed by Scott Fenton, 1-Apr-2011.) (Proof shortened by JJ, 23-Jul-2021.) |
| Ref | Expression |
|---|---|
| sneqrg | ⊢ (𝐴 ∈ 𝑉 → ({𝐴} = {𝐵} → 𝐴 = 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | snidg 4206 | . . 3 ⊢ (𝐴 ∈ 𝑉 → 𝐴 ∈ {𝐴}) | |
| 2 | eleq2 2690 | . . 3 ⊢ ({𝐴} = {𝐵} → (𝐴 ∈ {𝐴} ↔ 𝐴 ∈ {𝐵})) | |
| 3 | 1, 2 | syl5ibcom 235 | . 2 ⊢ (𝐴 ∈ 𝑉 → ({𝐴} = {𝐵} → 𝐴 ∈ {𝐵})) |
| 4 | elsng 4191 | . 2 ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ {𝐵} ↔ 𝐴 = 𝐵)) | |
| 5 | 3, 4 | sylibd 229 | 1 ⊢ (𝐴 ∈ 𝑉 → ({𝐴} = {𝐵} → 𝐴 = 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1483 ∈ wcel 1990 {csn 4177 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-v 3202 df-sn 4178 |
| This theorem is referenced by: sneqr 4371 sneqbg 4374 altopth1 32072 altopth2 32073 |
| Copyright terms: Public domain | W3C validator |