| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > snsspw | Structured version Visualization version GIF version | ||
| Description: The singleton of a class is a subset of its power class. (Contributed by NM, 21-Jun-1993.) |
| Ref | Expression |
|---|---|
| snsspw | ⊢ {𝐴} ⊆ 𝒫 𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqimss 3657 | . . 3 ⊢ (𝑥 = 𝐴 → 𝑥 ⊆ 𝐴) | |
| 2 | velsn 4193 | . . 3 ⊢ (𝑥 ∈ {𝐴} ↔ 𝑥 = 𝐴) | |
| 3 | selpw 4165 | . . 3 ⊢ (𝑥 ∈ 𝒫 𝐴 ↔ 𝑥 ⊆ 𝐴) | |
| 4 | 1, 2, 3 | 3imtr4i 281 | . 2 ⊢ (𝑥 ∈ {𝐴} → 𝑥 ∈ 𝒫 𝐴) |
| 5 | 4 | ssriv 3607 | 1 ⊢ {𝐴} ⊆ 𝒫 𝐴 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1483 ∈ wcel 1990 ⊆ wss 3574 𝒫 cpw 4158 {csn 4177 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-v 3202 df-in 3581 df-ss 3588 df-pw 4160 df-sn 4178 |
| This theorem is referenced by: snexALT 4852 snwf 8672 tsksn 9582 |
| Copyright terms: Public domain | W3C validator |