![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > spi | Structured version Visualization version GIF version |
Description: Inference rule reversing generalization. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
spi.1 | ⊢ ∀𝑥𝜑 |
Ref | Expression |
---|---|
spi | ⊢ 𝜑 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | spi.1 | . 2 ⊢ ∀𝑥𝜑 | |
2 | sp 2053 | . 2 ⊢ (∀𝑥𝜑 → 𝜑) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ 𝜑 |
Colors of variables: wff setvar class |
Syntax hints: ∀wal 1481 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-12 2047 |
This theorem depends on definitions: df-bi 197 df-ex 1705 |
This theorem is referenced by: darii 2565 barbari 2567 cesare 2569 camestres 2570 festino 2571 baroco 2572 cesaro 2573 camestros 2574 datisi 2575 disamis 2576 felapton 2579 darapti 2580 calemes 2581 dimatis 2582 fresison 2583 calemos 2584 fesapo 2585 bamalip 2586 kmlem2 8973 axac2 9288 axac 9289 axaci 9290 bnj864 30992 |
Copyright terms: Public domain | W3C validator |