| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > festino | Structured version Visualization version GIF version | ||
| Description: "Festino", one of the syllogisms of Aristotelian logic. No 𝜑 is 𝜓, and some 𝜒 is 𝜓, therefore some 𝜒 is not 𝜑. (In Aristotelian notation, EIO-2: PeM and SiM therefore SoP.) (Contributed by David A. Wheeler, 25-Nov-2016.) |
| Ref | Expression |
|---|---|
| festino.maj | ⊢ ∀𝑥(𝜑 → ¬ 𝜓) |
| festino.min | ⊢ ∃𝑥(𝜒 ∧ 𝜓) |
| Ref | Expression |
|---|---|
| festino | ⊢ ∃𝑥(𝜒 ∧ ¬ 𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | festino.min | . 2 ⊢ ∃𝑥(𝜒 ∧ 𝜓) | |
| 2 | festino.maj | . . . . 5 ⊢ ∀𝑥(𝜑 → ¬ 𝜓) | |
| 3 | 2 | spi 2054 | . . . 4 ⊢ (𝜑 → ¬ 𝜓) |
| 4 | 3 | con2i 134 | . . 3 ⊢ (𝜓 → ¬ 𝜑) |
| 5 | 4 | anim2i 593 | . 2 ⊢ ((𝜒 ∧ 𝜓) → (𝜒 ∧ ¬ 𝜑)) |
| 6 | 1, 5 | eximii 1764 | 1 ⊢ ∃𝑥(𝜒 ∧ ¬ 𝜑) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 384 ∀wal 1481 ∃wex 1704 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-12 2047 |
| This theorem depends on definitions: df-bi 197 df-an 386 df-ex 1705 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |