MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  spimvALT Structured version   Visualization version   GIF version

Theorem spimvALT 2258
Description: Alternate proof of spimv 2257. Shorter but requires more axioms. (Contributed by NM, 31-Jul-1993.) (Proof modification is discouraged.) (New usage is discouraged.)
Hypothesis
Ref Expression
spimv.1 (𝑥 = 𝑦 → (𝜑𝜓))
Assertion
Ref Expression
spimvALT (∀𝑥𝜑𝜓)
Distinct variable group:   𝜓,𝑥
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝜓(𝑦)

Proof of Theorem spimvALT
StepHypRef Expression
1 nfv 1843 . 2 𝑥𝜓
2 spimv.1 . 2 (𝑥 = 𝑦 → (𝜑𝜓))
31, 2spim 2254 1 (∀𝑥𝜑𝜓)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wal 1481
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-12 2047  ax-13 2246
This theorem depends on definitions:  df-bi 197  df-an 386  df-ex 1705  df-nf 1710
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator